The study of artifact standardization is an important line of archaeological inquiry that continues to be plagued by the lack of an independent scale that would indicate what a highly variable or highly standardized assemblage should look like. Related to this problem is the absence of a robust statistical technique for comparing variation between different kinds of assemblages. This paper addresses these issues. The Weber fraction for fine-length estimation describes the minimum difference that humans can perceive through unaided visual inspection. This value is used to derive a constant for the coefficient of variation (CV = 1.7 percent) that represents the highest degree of standardization attainable through manual human production of artifacts. Random data are used to define a second constant for the coefficient of variation that represents variation expected when production is random (CV = 57.7 percent). These two constants can be used to assess the degree of standardization in artifact assemblages regardless of kind. Our analysis further demonstrates that CV is an excellent measure of standardization and provides a robust statistical technique for comparing standardization in samples of artifacts.

El estudio de estandarización y variación ha sido una importante y valiosa línea de interés en los análisis arqueológicos. Sin embargo, aún persisten dos problemas que son el enfoque de este estudio. En primer lugar, faltan medidas independientes para evaluar problemas de estandarización y variación. En otros términos, no hay nada que indique cómo se debe hacer una muestra arqueológica bien estandarizada o bien variable. En segundo lugar, no existe una técnica estadística segura para hacer comparaciones cuantitativas. El ‘Weber fraction,’ utilizado para la estimación de una línea amplia describe la diferencia mínima que seres humanos pueden percibir con solo una inspección ocular. Este valor es utilizado para derivar una constante (CV = 1.7 percent) que representa la variación mínima obtenida a través de la producción manual de artefactos por seres humanos. Datos aleatorios son utilizados para determinar una segunda constante que representa la variación esperada bajo condiciones aleatorias (CV = 57.7 percent). De este modo, estas dos constantes pueden estar utilizadas para determinar el grado de estandarización en las colecciones de artefactos. También, este estudio proporciona una técnica estadística segura para comparar la estandarización en muestras de artefactos.

The study and interpretation of artifact variation is essential for understanding and explaining the archaeological record. The most visible contribution of this research is taxonomic, the creation of schemes that divide material culture into meaningful functional, temporal, and geographical categories. In recent years, however, inquiry has increasingly shifted from developing taxonomies to interpreting the variation that makes them work. The study of variation and standardization has become commonplace across a broad range of subject matters relevant to anthropological theory and culture history (see Rice 1991 for a review). Ceramics feature prominently in these studies (e.g., Arnold 1991; Blackman et al. 1993; Costin and Hagstrum 1995; Crown 1999; Longacre 1999; Longacre et al. 1988; Rice 1991; Rotton 1966), but lithics (Bettinger and Eerkens 1997, 1999; Chase 1991; Eerkens 1997, 1998; Hayden and Gargett 1988; Torrence 1986), bone and antler (Dobres 1995), and textiles (Rowe 1978) are also well represented.

Variation is useful for understanding such a broad range of phenomena because it reflects the degree of tolerance for deviation from a standard size, shape, form, or method of construction. Higher tolerance increases variability, while lower tolerance decreases variability leading to standardization. Standardization, then, is a relative measure of the degree to which artifacts are made to be the same. Standardization is in turn related to the life cycle of the artifact type or
class in question, reflecting such things as production costs, consumer preferences, replication and learning behaviors, number of producers, concern with quality, producer skill, and access to resources. Unfortunately, the statistics of variation have not kept pace with this growing interest in variation. Although many approaches have been used, none is universally applicable, and, when the analysis proceeds to interpretation, the emphasis is always on qualitative rather than quantitative characterizations. Studies of variation have employed a sophisticated range of measures (e.g., standard deviation, coefficient of variation, skewness, etc.), but nothing in the theoretical or experimental literature provides an independent standard for interpreting these measures. Nor is it possible, given the present situation, to compare the amount of variation observed between two artifact classes, for example, between ground stone and chipped stone artifacts. In sum, the anthropological study of variation lacks a robust statistical approach.

This paper addresses these issues on two counts. First, it seeks to place observed artifact variation within a universal context by exploring theoretically derived guidelines or baseline values that can assist interpretation. The upper baseline (highest degree of standardization) describes the minimum amount of metrical variation humans can generate without such external aids as rulers. The lower baseline describes the amount of variation that will occur when there is no attempt at standardization at all, i.e., when production is random relative to a standard. We borrow from psychology and statistics to derive these boundaries. Second, we present a statistical method for comparing variation between assemblages that is applicable to cases where assemblages differ with respect to artifact class or attribute size. We argue that under most circumstances coefficient of variation (CV) is a stable and reliable measure of variation.

Human Error and Weber Fractions

Humans commit all kinds of errors when hand-crafting such objects as ceramic pots and stone projectile points. The kind of error we are interested in here is that which would result were one to show a skilled stone knapper a model projectile point, request 10 identical copies (to the best of his/her ability), and allow the knapper to discard any specimens s/he might regard as deviant. Observed variation in shape or size of the 10 points would then represent knapper error in replicating the model projectile point. Multiple factors would contribute to this error (Rice 1991:273 lists several), but a key source is what can be termed scalar error, stemming from errors in estimating object size and translating mental images into properly scaled physical objects. This error is neither random nor absolute. It is limited by human visual perception and motor skill and increases linearly with the magnitude or size of the intended end product (e.g., Coren et al. 1994). This makes it possible to define a quantitative boundary for the least amount of variation that can be expected under the most rigorous kind of production.

When humans attempt to estimate the size or magnitude of an object visually, without reference to an independent scale (i.e., without a ruler), they make mistakes that grow larger in absolute size as the size of object increases; the larger the object, the larger the absolute error in estimated size (Coren et al. 1994:39–43; Kerst and Howard 1978; Teghtsoonian 1971). Similarly, when people attempt to make an object from a mental image or model, they make mistakes that increase in absolute size as template size increases. If a person makes 10 objects independently from the same mental image, both the range and standard deviation of size of those 10 finished objects will increase as the template size increases. In short, error and size are correlated; people make larger absolute errors when making larger objects. More importantly, the rate at which error and intended size are correlated is linear. Such scaling error is frequently discussed in the psychophysics literature (e.g., Algom 1992; Coren et al. 1994; Gescheider 1997; Miller 1956; Stevens 1975) and has also been observed in archaeological materials (e.g., Bettinger and Eerkens 1997; Eerkens 1998; Shott 1997) and replication experiments (Eerkens 2000).

This phenomenon is a product of how the human brain interprets, measures, and compares visual and other sensory information. In the mid-1800s E. H. Weber observed that the ability of individuals to discriminate between objects of different weight depended on the mean weight of the objects involved (Coren et al. 1994:39–43; Weber 1834). In lifting experiments Weber discovered that to be perceived as differing in weight, heavy objects had to differ by a greater absolute amount than lighter objects. Weber also determined, however, that the relative difference needed to make such distinctions remained relatively constant. Specifically, he found that two
objects had to differ by more than about 2 percent (1/50) for a difference in weight to be detected, meaning that two large objects had to differ more in absolute size than two small objects. Thus, unlike mechanical scales that determine weight within an invariant unit of error (e.g., ± .1 g), human appreciation of heaviness is scaled relative to object weight (see Jones 1986; Ross 1981, 1995; Stevens 1979 for more recent work with weight). This value (2 percent) has come to be called the Weber’s fraction for heaviness (see also Norwich 1987; Ross 1997; Ross and Gregory 1964; Teghtsoonian 1971).

Human perception of length and area are similarly scaled. The Weber fraction for perception of the length of a line is similar to that for heaviness, about 3 percent (Teghtsoonian 1971). This number varies slightly from person to person, but does not vary significantly by gender, age, or within an individual over the course of time (Verrillo 1981, 1982, 1983) although remembered length seems to vary more with increasing time (Kerst and Howard 1978, 1981, 1984) and context (Hotopf et al. 1983; Pagano and Donahue 1999). In this respect the Weber fraction for length perception is surprisingly constant over an extremely wide range of sizes (Coren et al. 1994; Laming 1997; Poulton 1989; see also Ross 1997). Recent work with other aspects of vision, such as color and contrast recognition, stereopsis, blur discrimination, and depth perception, show similar magnitude and error-scaling properties, though the Weber Fraction value and the structure of the relationship can change (Howard and Rogers 1995; Mather 1997; Schwartz 1999; Smallman et al. 1996).

Thus, the ability of humans to perceive a difference in the size of two objects, or between a mental image of an object and the object itself, is limited by our sensory system. This difference must be at least 3 percent. This does not apply when a physical standard, such as a ruler, is used as the method of measurement. In that context, the ability of a subject to measure size or length is independent of absolute object size, turning instead on subject ability to differentiate between marks on the ruler. With a ruler, the error in measuring 10-cm objects and 1000-cm objects is the same.

Scaling and Artifact Variation

That scalar error and object size are linearly and positively correlated in human perception of weight, length, and area has several implications for understanding artifact variability. Foremost, it implies that scalar error divided by size will be constant in sets of handmade artifacts that are manufactured without rulers. This is convenient because archaeologists frequently express artifact variation in precisely this manner using the Coefficient of Variation (CV), defined as the sample standard deviation divided by the sample mean, which is often multiplied by 100 and expressed as a percentage. Thus, the Weber fraction and CV both express variation scaled to magnitude. Further, it is easy to convert the Weber fraction into CV form by using the notion of a uniform distribution.

A uniform distribution defines a range within which all values are equally frequent or probable. This might be the case if one were randomly picking numbers between 0 and X out of a hat, each number being represented once and having the same chance of being drawn. Such a population is uniformly distributed between 0 and X, with a mean of X/2. The width of the range, then, is twice, or 200 percent of, the mean, running from X/2 - X/2 (= 0) to X/2 + X/2 (= X). Regardless of the size of X, all such distributions have a CV of 57.7 percent (= 1/√3). In comparison, Weber error should generate distributions that are uniform but much more narrowly limited around the mean. As we have seen, acting alone, Weber error will cause humans to produce collections of objects whose range in size is 6 percent of the mean, i.e., from 97 percent of the mean to 103 percent of the mean. Such a relationship might be expected if subjects were asked to draw a line equal in length to a reference line and they did so without any additional error due to motor-skill inaccuracy. When the line is drawn within ±3 percent or −3 percent of the reference, subjects perceive the two as equal and stop drawing, though in reality the lines would differ by some finite amount. Since human perception is unable to discern smaller differences, values will be uniformly distributed within these extremes (i.e., all values are equally likely). Since the CV for uniform distributions whose range is 200 percent of the mean is 1/√3 (= 57.7 percent), it follows that the CV for the narrower uniform distribution defined by the Weber fraction (range = 6 percent of the mean) will be (6 percent / 200 percent) x 1/√3 = 1.7 percent. This is essentially identical to the values obtained in psychological experiments where subject estimates of line-segment length display a CV of 1.6 percent (Ogle 1950:231). We can produce the same result empiri-
Figure 1. Mean-standard deviation relationships for three archaeological data sets and relationship to random data and Weber fraction. Solid lines represent best-fit regression lines through relevant data points. Dashed lines represent best-fit regression lines through data generated by Weber fraction and random-uniform data.

cally by repeatedly drawing random numbers from uniform distributions whose means are different but whose ranges are always from 97 percent of the mean to 103 percent of the mean. The lower line in Figure 1 presents such a simulation. Each of the 20 cases shown represents a sample of 200 numbers randomly drawn from a uniform distribution, producing a corresponding mean, standard deviation, and CV. As shown, the expected CV for each case is 1.7 percent. The simulation obeys this expectation with CVs falling very near 1.7 percent for each of the 20 cases.

The CV of 1.7 percent derived for the Weber fraction should represent the minimum amount of variability attainable by humans for length measurements. Variation below this threshold is not possible given the visual perception capabilities of most humans. Sets of artifacts that display CVs less than 1.7 percent imply automation or use of an independent standard. Of course, small errors in motor skills and memory will introduce additional variability in the manual production of artifacts (Algom 1992; Kerst and Howard 1984; Moyer et al. 1978). Eerkens (2000) suggests that CVs in the range of 2.5-4.5 percent are more typical of the minimum error attainable by individuals in manual production without use of external rulers. Similarly, Longacre (1999) reports CV values in the range of 2-5 percent for aperture, circumference, and height for "standardized" handmade pots, constructed without the use of a ruler by highly skilled Philippine specialists. Quite clearly, these artifacts are highly standardized, approaching the Weber fraction CV, and are probably close to the minimum CV attainable in manual production.

It follows from all of the above that variation in artifacts produced manually without the use of an
independent ruler should be scaled positively and linearly to the mean. Attributes that fail to show such scaling imply an alternative mode of production.

Variation in random distributions is also scaled to the mean. As we have just shown, any uniform distribution of positive numbers, with a lower limit of 0, an upper limit of X, and a mean of X/2, will have a CV of 57.7 percent. A set of artifact attributes distributed in such a manner would imply that variation within 100 percent on either side of the mean was within production standards; this as opposed to 3 percent on either side of the mean defined by the Weber fraction. Production where anything from 0 percent of the mean to 200 percent of the mean is tolerated would, indeed, be extreme, and clearly, humans do not produce artifacts in uniformly distributed ways (again, see note 2). However, even a normally distributed variable with a CV of 57.7 percent displays nearly as many variates that fall more than half of the mean from the mean as a uniform distribution (39 percent against 50 percent); and the normally distributed variable displays more variates that fall further than the mean from the mean than the uniform distribution (8 percent against 0 percent). In short, whether populations are normally or uniformly distributed, CVs greater than or equal to 57.7 percent are derived from extremely variable populations in which approximately 40-50 percent of the variates fall more than half the mean from the mean.

As just noted, artisans producing material goods are unlikely to be working with an arbitrary size interval ranging from an unspecified value of X all the way down to 0. In the real world, therefore, unstandardized assemblages should display CVs less than 57.7 percent. Observed minimum and maximum values can be used to obtain a more conservative, empirical standard for random production in specific cases \(= \frac{(A-B)}{(A+B)} \times 0.577 \), where \(A \) is the maximum observed value and \(B \) is the minimum observed value. This avoids the implication that objects of zero length or zero size are acceptable when production is random (which is obviously not so), but risks the possibility that the observed maximum and minimum values underestimate the true limits of production tolerance. Because of the latter, we prefer to use the theoretically derived value \(CV = 57.7 \) percent as the baseline standard for random production, noting that under the proper conditions important insights may be gained through the use of an empirically determined standard.

Independent Standards and Use of the CV

The CVs derived from the Weber fraction and the uniform-random distribution provide two baseline measures against which variability in artifact assemblages can be compared. The uniform-random CV value (57.7 percent) does not involve the kind of psychological limitation that gives rise to the Weber fraction CV (1.7 percent). Nevertheless, it provides a useful measurement to examine variability encountered in archaeological situations. Variation below 1.7 percent suggests use of a scale or external template to measure and manufacture artifacts and should be typical of settings where items are mechanically produced (i.e., perhaps from a mold or by a machine). Variation above 57.7 percent suggests intentional inflation of variation and may indicate situations where individual manufacturers are actively trying to differentiate their products from those of others, thereby increasing variation. An intentional increase is necessarily implied because variation is greater than would occur when production is completely random. Alternatively, such cases might also describe situations where an archaeologist has unknowingly lumped two or more discrete classes of artifacts into a single category, thereby artificially increasing variation.

Between these extremes a wide range of possibilities exist. Figure 1 also shows mean-standard deviation relationships for several archaeological collections including microliths from Mesolithic sites in Northern England, manos or milling handstones from Chaco Canyon, New Mexico, and Bronze Age safety pin brooches from Switzerland.

As Figure 1 shows, archaeological data often show linear correlation between mean and standard deviation (see Bettinger and Eerkens 1997 for a similar discussion for Great Basin projectile points). Lines running through the data indicate best-fit regressions. However, the nature of the regression, as measured by the slope, varies by collection. Steeper slopes denote collections characterized by less-standardized attributes (i.e., standard deviation increases relatively sharply relative to size). For example, Chaco Canyon manos show the least variation with increasing mean (see Cameron 1997), though they show more variation than the Weber fraction for length (indicated by a dashed line near the bottom of Figure 1). This suggests that of the three collections, the Chaco Canyon manos are the most...
standardized or most consistently made. Microliths
(see Eerkens 1997, 1998) show greater variation on
average than Chaco Canyon manos, but less than
Bronze Age brooches (see Doran and Hodson 1975),
which equal the variation expected under random
conditions. We are reluctant to characterize the pro-
duction of brooches as random, since each was care-
fully made in a certain way. However, the high CVs
suggest manufacturers were relatively unconcerned
with conformance to a specific size. In this respect,
the brooches represent a very unstandardized set of
artifacts—at least with respect to size (see also Tor-
rence 1986:158–159 for examples of highly variable
lithic data sets where CVs exceed 57.7 percent).

Another way to think of this is in terms of the
intensity of constraints or forces acting to reduce
variation within a data set (perhaps how intensely
the data set has been winnowed or selected). The
strength of the regression as measured, for exam-
ple, by \(r^2 \), describes the consistency in standard-
ization within the data set from sample to sample.
Collections with high goodness-of-fit values sug-
gest that the intensity of selection is roughly equal
on all samples, while lower values imply that some
attributes or samples are more standardized than
others.

Importantly, the figure demonstrates that stand-
ard deviation is inappropriate as a statistic to com-
pare standardization between samples, because it
fails to scale variation properly. Samples with smaller
means will have smaller standard deviations simply
because their means are small, hence will appear
more standardized. For example, consider two sam-
ples of random numbers drawn from uniform distri-
butions, the first with a mean of 10.03 and standard
deviation 5.47 (\(n = 50 \)) and a second with mean .96
and standard deviation .56 (\(n = 50 \)). These two sam-
.ples represent two distinct points in the left-hand line
in Figure 1. Since both samples contain completely
.random numbers, neither is more standardized than
the other. However, any statistical test used to com-
pare standard deviation between these two samples,
including the \(F \)-Test and Brown-Forsyth test (see be-
low), would find statistically significant differ-
ences between the two. Such a test would wrongly
conclude that the second sample is more standard-
ized than the first. A test comparing CVs, on the other
hand, would find no difference, which is the desired
result (see below). CV is an inappropriate compara-
tive measure, however, when the relationship
between mean and standard deviation is either neg-
ative or non-linear.

In sum, where the mean-standard deviation rela-
tionship is linear and positive, especially when the
regression line passes near the origin, CV will be the
more reliable measure of variation because it scales
standard deviation to the mean. When these condi-
tions hold, CV facilitates comparison of variation
across different-sized attributes (i.e., large vs. small),
as well as across attributes measured by differ-
sing scales (i.e., centimeters vs. grams). Most metric
attributes typically measured in artifact assemblages
(e.g., length, width, thickness, diameter, and weight)
meet these conditions. Provided the range of values
is not excessive (i.e., not greater than 180 degrees),
angular data should also meet these criteria. For these
reasons, CV should be the standard statistic in stud-
ies of variation.

Quantifying and Measuring Standardization
The CV is commonly used in other natural sciences
such as medicine, biology, and psychology. Although
some archaeological studies have made qualitative
comparisons of CVs (e.g., Arnold 1991; Benco 1988;
Longacre et al. 1988; Torrence 1986), quantitative
analyses with this statistic are notably absent. It has
even been argued that it is not possible to test the sta-
tistical significance of CV (e.g., Arnold and Nieves
1992; Blackman et al. 1993). This is not so. Statis-
tical research provides several techniques for creat-
ing confidence intervals and testing equality of CV
(Bennett 1976; Doornbos and Dijkstra 1983; Gupta
and Ma 1996; Vangel 1996), some of which are
robust to departures from normality (Feltz and Miller
1996).

Many archaeological studies rely on the \(F \)-ratio
test to compare variation. However, as Kvanme
et al. (1996) have pointed out, this test requires nor-
mality in the underlying sample populations, an
assumption that does not hold in many archaelog-
ical situations. Instead, they recommend use of alter-
native homogeneity of variance (HOV) tests, such as
the Brown-Forsyth test (Brown and Forsythe
1974), that are robust to departures from normality
(see Conover et al. 1983 for a comparison and dis-
cussion of over 50 HOV tests). Unfortunately, use of
HOV tests, even those that are robust to non-nor-
mality, are of little use in studying variation unless
the analyst is certain that the means of the samples
being compared are approximately equal. This is
because, as shown above, variance is often scaled to the mean. A standard deviation of five indicates something quite different in a sample with a mean of 10 (CV = 50 percent) than in a sample with a mean of 100 (CV = 5 percent). Tests for HOY are not sensitive to this, and only compare absolute measures of variance. Unless variation is scale-independent or sample means are approximately equal, HOY tests should not be used in studies of artifact variation.

Tests comparing CV, on the other hand, are sensitive to differences in magnitude or mean. Moreover, CV is a reliable statistic even at small sample sizes (Simpson 1947; Simpson et al. 1960). For this reason, the CV is appropriate for archaeological studies comparing sample variation. Unfortunately the techniques have not yet been incorporated into popular statistical packages (Reh and Scheffler 1996). Presented below is the formula for one such test developed by Feltz and Miller (1996) that is reasonably robust to departures from normality and allows simultaneous comparison of CVs from k sample populations with unequal sample sizes. This statistic is recommended for use in standardization and variation studies.

\[
D'AD = \frac{\sum_{j=1}^{k} m_j \left(s_j \bar{x}_j - D \right)^2}{D^2 (0.5 + D^2)}, \quad \text{where } D = \frac{\sum_{j=1}^{k} m_j s_j}{\sum_{j=1}^{k} m_j} \]

In D'AD, k is the number of samples, \(j \) is an index referring to the sample number, \(n_j \) is the sample size of the \(j \)th population, \(m_j = (n_j - 1) \), \(s_j \) is the standard deviation of the \(j \)th population, and \(\bar{x}_j \) is the mean of the \(j \)th population. D'AD is distributed as a \(\chi^2 \) random variable with \(k - 1 \) degrees of freedom, and basically describes how far sample CVs lie from the estimate of the overall population CV. Unlike the Brown-Forsyth statistic, D'AD is simple to determine and can be computed from summary statistics only (mean, standard deviation, and number of samples).

Examples

How do archaeological samples stack up against the CV boundary values of 1.7 percent and 57.7 percent presented earlier? Table 1 lists the average and the range of CV values for various attributes on material artifacts from a variety of studies. This sample is nonrandom and obviously incomplete, but represents a range of artifact and attribute types typically encountered by archaeologists. Obviously, there is much variation in CVs across these data sets. Items made by a few people, such as Philippine pots (Longacre 1999) and Duna Are Kou stone tools (White and Thomas 1972), are much more standardized than generalized assemblages of microliths from England (Eerkens 1997, 1998) and projectile points from the Great Basin (Eerkens and Bettinger 1997), which were likely made by hundreds if not thousands of different flintknappers. Similarly, artifacts typically considered functional, such as projectile points from the Great Basin and manos from Chaco Canyon (Cameron 1997) have much lower CV values than attributes typically considered stylistic, such as line elements painted on Southwestern pots (Kantner 1999) or Swiss Bronze Age safety pin brooches (Doran and Hodson 1975). CV values on the latter often exceed 57.7 percent, suggesting individuals were resisting conformity to a central or ideal template.

The amount of variation in most of these cases is

<table>
<thead>
<tr>
<th>Data Set</th>
<th>Avg. CV (%)</th>
<th>Range of CV (%)</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine-Produced Items</td>
<td>.1</td>
<td>.1 - 2</td>
<td>Eerkens 2000</td>
</tr>
<tr>
<td>Weber Fraction</td>
<td>1.6</td>
<td>1.6 - 1.7</td>
<td>Ogle 1950</td>
</tr>
<tr>
<td>Pots by specialized potters</td>
<td>4</td>
<td>2 - 6</td>
<td>Longacre 1999</td>
</tr>
<tr>
<td>Cut-outs from mental image</td>
<td>5</td>
<td>2.5 - 8</td>
<td>Eerkens n.d.</td>
</tr>
<tr>
<td>Duna Are Kou</td>
<td>10</td>
<td>8 - 11</td>
<td>White and Thomas 1972</td>
</tr>
<tr>
<td>Chaco Canyon Manos</td>
<td>17</td>
<td>8 - 35</td>
<td>Cameron 1997</td>
</tr>
<tr>
<td>Great Basin projectile points</td>
<td>22</td>
<td>6 - 55</td>
<td>Bettinger and Eerkens 1997</td>
</tr>
<tr>
<td>Owens Valley Handstones</td>
<td>22</td>
<td>10 - 32</td>
<td>This article</td>
</tr>
<tr>
<td>Random Uniform Data</td>
<td>58</td>
<td>50 - 65</td>
<td>This article</td>
</tr>
<tr>
<td>Stylistic elements on SW pots</td>
<td>66</td>
<td>46 - 84</td>
<td>Kantner 1999</td>
</tr>
<tr>
<td>Safety pin brooch attributes</td>
<td>74</td>
<td>25 - 113</td>
<td>Doran and Hodson 1975:224</td>
</tr>
</tbody>
</table>

Table 1. Average and Range of CV (Percentage) Values for Various Material Artifact Data Sets.
far above the minimum humans are able to detect (at 1.7 percent) and produce (at 2–4 percent), often by a factor of 10 or more. This may stem from several factors. First, people may accept visually detectable variation (more than 1.7 percent) because within some margin an artifact may be close enough to the ideal shape that spending more time modifying it is not worth the extra effort (i.e., to possibly obtain a small increase in performance). In other words, beyond some point, imperfect artifacts may still be good enough. This concept has been referred to elsewhere as design constraint or design tolerance (Aldenderfer 1990; Bleed 1986, 1997). Items needed for exact or specialized work are likely to have high design constraints (low tolerance for deviation from the optimal shape), and should display lower CVs than less-specialized tools.

Second, as we have seen, the number of people responsible for a set of artifacts may be important. Different people are likely to have slightly different ideas and definitions of what constitutes an “ideal” shape for a particular item. As such, samples of artifacts that archaeologists typically compare when studying variation may differ simply as a result of the number of manufacturers contributing to samples. For example, Eerkens (1997, 1998) has compared Later Mesolithic microliths from generalized site contexts, likely representing numerous individuals, with those from specialized “hoard” or “group” find-spots representing the work of a single individual. Not surprisingly, CVs from the latter are much smaller than the former. Routinization is likely to play a role here as well. Large numbers of artifacts made over a short amount of time with a similar and well-remembered mental image will have lower CV values than those made one at a time over a longer period of time.

Third, archaeologists may unknowingly group artifacts that were considered distinct by their makers, thereby artificially increasing CV values. In other words, elevated CVs may be a product of the etic categories archaeologists define, as opposed to the emic categories and restricted CVs manufacturers were originally working with. Longacre et al. (1988) has recognized this problem in an ethnoarchaeological study of Kalinga pots, where inadvertent lumping of multiple size classes of pots by archaeologists led to artificially inflated values of variation.

Finally, different raw materials, such as clay and stone, exhibit different forming properties. Some, such as clay, are easier to control, form, and modify, while others, such as flaked stone, are less predictable and controllable, and can only be modified through further reduction of the artifact. Media that are more difficult to control are likely to have inflated CV values. Of course, standardization and design tolerances are relative to different media, technologies, and intended artifact functions (Aldenderfer 1990; Bleed 1997:100). Thus, CVs that might be considered standardized within a flaked-stone technology producing projectile points may not be in a clay technology producing pots, clay being easier to shape. The study of each technology will need to empirically derive CV values that represent what is called “standardized.”

Our point here is that there is a limit to how standardized things can get, based on the human ability to differentiate size. In the example above, people are likely to see that, in an absolute sense, there is more variability among projectile points than pots. However, the effort that it would take to make the projectile points as standardized as the pots through additional careful flaking may not be worth whatever benefits might accrue. In this sense, we can compare standardization and variation between different technologies. However, the results might tell us more about the inherent difficulties in controlling different media than whether one technology is more standardized, and that people were more careful or concerned about it, than another.

Table 2 uses seven samples drawn from Table 1 to illustrate the superiority of the D’AD test over the F-ratio test. The F-ratio test (see Runyon and Haber 1988:324), which is occasionally used in archaeological studies (e.g., Arnold 1991; Arnold and Nieves 1992; Longacre et al. 1988), examines the ratio of squared sample standard deviations (sample variances) to test equality of variance. Unlike D’AD, then, F-ratio does not incorporate sample mean. The samples compared in Table 2 include attributes that are typically considered “functional” (microlith length and thickness, projectile-point length); attributes typically considered “stylistic” (Swiss safety-pin bow width, painted line width on black-on-white ceramics), as well as two sets of random data drawn from uniform distributions with means of 10 and 1. The D’AD tests clearly demonstrate distinct differences between the “functional” and “stylistic” attributes. The CVs of all functional samples are statistically distinct from all stylistic samples (i.e., p...
Table 2: Statistical Comparison of Variation CV in Various Assemblages: F-Ratio (Using Standard Deviation) in Upper Right, and D'AD (Using CV) in Lower Left.

<table>
<thead>
<tr>
<th>D'AD</th>
<th>Micro lith length</th>
<th>Micro lith thick.</th>
<th>DSN length</th>
<th>SW pot line wid.</th>
<th>Brooch bow wid.</th>
<th>Random Data 1</th>
<th>Random Data 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prestatyn micro lith length</td>
<td>180.0</td>
<td>1.862</td>
<td>43.78</td>
<td>1.9</td>
<td>1.28</td>
<td>74.1</td>
<td></td>
</tr>
<tr>
<td>(x = 20.32; s = 4.83; n = 16)</td>
<td>p = .000</td>
<td>p = .08</td>
<td>p = .000</td>
<td>p = .07</td>
<td>p = .25</td>
<td>p = .000</td>
<td></td>
</tr>
<tr>
<td>Prestatyn micro lith thick.</td>
<td>1.24</td>
<td>96.94</td>
<td>4.11</td>
<td>95.52</td>
<td>30.87</td>
<td>2.43</td>
<td></td>
</tr>
<tr>
<td>(x = 1.97; s = .36; n = 25)</td>
<td>p = .27</td>
<td>p = .000</td>
<td>p = .000</td>
<td>p = .000</td>
<td>p = .000</td>
<td>p = .01</td>
<td></td>
</tr>
<tr>
<td>Owens Valley DSN length</td>
<td>3.03</td>
<td>0.4</td>
<td>23.52</td>
<td>1.0</td>
<td>2.39</td>
<td>39.82</td>
<td></td>
</tr>
<tr>
<td>(x = 22.05; s = 3.54; n = 28)</td>
<td>p = .08</td>
<td>p = .52</td>
<td>p = .000</td>
<td>p = .47</td>
<td>p = .004</td>
<td>p = .000</td>
<td></td>
</tr>
<tr>
<td>SW pots line width</td>
<td>6.96</td>
<td>15.21</td>
<td>19.28</td>
<td>22.99</td>
<td>56.15</td>
<td>1.69</td>
<td></td>
</tr>
<tr>
<td>(x = 1.12; s = .73; n = 190)</td>
<td>p = .01</td>
<td>p = .000</td>
<td>p = .000</td>
<td>p = .000</td>
<td>p = .000</td>
<td>p = .02</td>
<td></td>
</tr>
<tr>
<td>Brooch bow width</td>
<td>6.71</td>
<td>14.42</td>
<td>24.84</td>
<td>0.97</td>
<td>2.44</td>
<td>38.9</td>
<td></td>
</tr>
<tr>
<td>(x = 6.57; s = 3.5; n = 30)</td>
<td>p = .01</td>
<td>p = .000</td>
<td>p = .000</td>
<td>p = .32</td>
<td>p = .003</td>
<td>p = .000</td>
<td></td>
</tr>
<tr>
<td>Random Data 1</td>
<td>6.71</td>
<td>17.11</td>
<td>23.14</td>
<td>1.24</td>
<td>.012</td>
<td>.951</td>
<td></td>
</tr>
<tr>
<td>(x = 10.03; s = 5.47; n = 50)</td>
<td>p = .01</td>
<td>p = .000</td>
<td>p = .000</td>
<td>p = .27</td>
<td>p = .91</td>
<td>p = .000</td>
<td></td>
</tr>
<tr>
<td>Random Data 2</td>
<td>8.62</td>
<td>18.4</td>
<td>24.5</td>
<td>2.44</td>
<td>.327</td>
<td>.3</td>
<td></td>
</tr>
<tr>
<td>(x = .93; s = .56; n = 50)</td>
<td>p = .03</td>
<td>p = .000</td>
<td>p = .000</td>
<td>p = .62</td>
<td>p = .57</td>
<td>p = .58</td>
<td></td>
</tr>
</tbody>
</table>

Notes: wid. = width, thick. = thickness, DSN = desert side-notched projectile point.

< .05). This is not true with the F-ratio tests, which in several instances failed to distinguish (p > .05) a functional attribute from a stylistic one (e.g., micro lith and projectile-point length are statistically indistinguishable from both brooch bow width and random data). Moreover, variation in the two random data sets is statistically equivalent by the D'AD test but statistically different according to the F-ratio. The results demonstrate that the F-ratio test is inadequate for the task of comparing variation and evaluating degree of standardization.

Discussion and Conclusions

Most archaeological studies of technology recognize only the role of the physical and social environment in shaping material culture (Bleed 1997:98) by focusing on how a raw material is modified using various tools, and how different social and physical processes influence the final product (Schiffer and Skibo 1997). As Bleed (1997:98) has discussed, the human body has seldom been seen as part of this process. As we hope to have made clear, the human body, with all of its attendant sensory systems and limitations, is a medium through which technology operates. Our abilities to see, feel, and modify material items are limited and affected not only by culture, but by the physics and psychophysics of the human body as well.

Understanding these limitations can help archaeologists to ask new questions from the material record. As we have shown above, the psychophysical limitations of size discrimination quantified by the Weber Fraction can help in recognizing different modes of artifact production and degrees of standardization. Weber fractions also have implications in symbolic archaeology because humans are limited in their ability to view, interpret, and discriminate artifacts in the same way they are limited in their ability to produce them in standardized form. Thus, two potters using color and size of painted design elements to differentiate their products must make them different enough that they exceed the just-noticeable-difference (derived from the Weber fraction) for color contrast and size. Even if we, as archaeologists, can discriminate finer differences using Munsell color charts, rulers, calipers, or Scanning Electron Microscopes (SEM), prehistoric people may not have been able to.

Finally, we feel the research is of relevance to studies of artifact change and the evolution of technologies through time. The study demonstrates that people are unable to differentiate subtle differences in the size of objects beyond a certain point. In the transmission of cultural information these limits are just as applicable, affecting how accurately people can copy from and learn from others, and how precisely artifact traits will be transmitted between people. Although beyond the scope of this paper, it should be possible to use the Weber fraction to make some predictions about the degree of drift expected in artifact populations through time, if people are attempting to faithfully copy traits and are randomly making small errors due to the limits of visual perception. These predictions could be tested against the
archaeological record to see if changes in artifacts follow those expected under drift. If variation is less than this value, other variation-minimizing forces may be at work. Alternatively, if variation exceeds this level, various variation-inflating forces may be responsible.

In the last analysis, size-correlated error tolerance is probably telling us something important about the evolutionary setting in which humans evolved, specifically about the penalties suffered in matching tool size to intended task or duplicating tools made by others. The evidence would suggest that errors became, or were perceived as becoming, more costly as tool size decreased. In such a context small tools are specialized tools by definition. Alternatively, the Weber fraction for estimating size may have evolved in an altogether different context, perhaps foraging where, as prey size decreases, absolute error in estimating prey size increases return-rate variability, hence risk of resource shortfall. If so, one would expect to find evidence of size-correlated error tolerance in a wide range of species other than humans. We are unaware of any animal studies of this phenomenon, though these would clearly be worth pursuing as would studies comparing size-correlated error between different hominin forms.

In sum, we have presented evidence showing that CV should be the standard statistic in studies of variation and have offered two baseline measures for placing observed CVs of length measurements along a continuum of variation from 1.7 percent, the limit of human ability to perceive a difference in size, to 57.7 percent, the variability expected when production is random or near-random and uniform (i.e., completely unstandardized). Using the CV, future studies can use these baseline values to evaluate the degree of variation or standardization in independent sets of artifacts. The D'AD test facilitates statistical comparison of CVs from samples of artifacts of differing size or magnitude to help evaluate degree of standardization. We hope that further exploration of the psychophysical literature will lead to a deeper understanding of how technology and the human body interact to create the material record, and variation therein, that we study.

Acknowledgments: Thanks to Mark Aldenderfer, Peter Bleed, Mike Jochim, John Kantner, Dwight Read, Kevin Vaughn, and an anonymous reviewer for reading earlier drafts of this paper. Their comments greatly helped to improve the final product. We also kindly thank Tim Kohler for critique, suggestions, and editorial comments, and Elizabeth Klarich and Christina Torres for their Spanish skills in translating the abstract.

References Cited

Aldenderfer, M. A.

Algorn, D.

Arnold, D. E., and A. L. Nieves

Arnold, P. J.

Benco, N.

Bennett, B. M.

Bettinger, R. L., and J. W. Eerkens

Blackman, J. M., P. B. Vandiver, and G. J. Stein

Bleed, P.

Brown, M. B., and A. B. Forsythe

Cameron, C. M.

Chase, P. G.

References Cited

Aldenderfer, M. A.

Algorn, D.

Arnold, D. E., and A. L. Nieves

Arnold, P. J.

Benco, N.

Bennett, B. M.

Bettinger, R. L., and J. W. Eerkens

Blackman, J. M., P. B. Vandiver, and G. J. Stein

Bleed, P.

Brown, M. B., and A. B. Forsythe

Cameron, C. M.

Chase, P. G.
Notes

1. This ensues because the mean of a uniform distribution on \([0, X]\) is \(X/2\) and the standard deviation is \(X/\sqrt{12}\). Thus, the CV is \(2/\sqrt{12}\), or \(1/\sqrt{3}\), or 57 percent. Note that this value only applies when the lower limit of the interval is set to 0. When the interval is more narrow, starting at a value greater than 0, a smaller CV ensues.

2. Normal distribution in human perception and manufacture are more likely. However, modeling the Weber fraction as a normal variable requires \textit{a priori} definition of a standard deviation or error value, which is what we are trying to model in the first place. As such, a uniform distribution is used.

Received April 22, 1999; Revised March 13, 2000; Accepted July 18, 2000.